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1 Introduction

The study of connectedness among financial assets and markets has emerged as a crucial endeavor

for understanding the interdependencies that shape global economic dynamics (Diebold and Yılmaz,

2014).1 Among these assets, oil-based energy commodities stand as a critical component, given the

pervasive influence of the oil sector on the global economy, financial markets, trade, and energy

security (Hamilton, 1996; Brown and Yücel, 2002; Nandha and Faff, 2008; Mohaddes and Pesaran,

2017; Gogolin, Kearney, Lucey, Peat and Vigne, 2018). Hence, studying the connectedness among oil-

based energy commodities is vital due to its significant implications for policymakers, investors, and

risk managers (Gorton and Rouwenhorst, 2006; Malik and Hammoudeh, 2007; Diebold and Yilmaz,

2012; Nazlioglu, Soytas and Gupta, 2015). The degree of connectedness often reflects shocks that

materialize within markets and economies, but one of the primary obstacles faced when studying

connectedness lies in the inherent uncertainty surrounding the timing of shocks. The precise moment

when a shock emerges and its subsequent impact on connectedness remains elusive due to the intricate

and dynamic nature of financial markets. So far, links between changes in the connectedness of oil-

based commodities and specific events have not been properly tested. In our analysis, we quantify

connectedness among the key oil-based energy commodities over more than four decades and explore

hundreds of potentially impactful shocks. We employ the novel formal testing method of Greenwood-

Nimmo, Kočenda and Nguyen (2023) and provide the first statistical evidence showing the types,

numbers, and timing of the shocks that truly impact connectedness among oil-based commodities.

Our motivation for detecting the precise timing of shocks that impact the value of connectedness

among oil-based energy commodities is grounded in several essential reasons. Prices of most assets on

the markets are closely influenced by important events and information arising from newly appearing

events has been empirically shown to be rather quickly and efficiently incorporated into prices (Fama,

Fisher, Jensen and Roll, 1969; Malkiel, 2003). Compared to other assets, oil-based energy commodities

seem to be more sensitive to events such as political concerns, supply chain shocks, or natural disasters

(Baruńık, Kočenda and Vácha, 2015; Karali, Ye and Ramirez, 2019). Nevertheless, the demand

reaction for oil is often disproportionate to the actual shocks caused by these events, and the timing

of the price change differs from the true supply shortage due to the expectations of future shortages

(Kilian, 2009). Furthermore, the volatility increase in one market is often followed by a similar

volatility increase in seemingly unrelated markets or assets, and energy commodities are no exception

to such contagion effects.

Hence, the detection of precise timing for shocks impacting the value of connectedness is essential in

1In economic terms, connectedness refers to the interdependence or interconnectedness between different financial
assets or markets. It is an essential tool when analyzing systemic risk and understanding how shocks or disturbances in
one asset or market can propagate and affect others.

2



a number of areas. First, identifying the timing of shocks helps establish causal relationships between

events and connectedness patterns (Aloui, Aı̈ssa and Nguyen, 2011). This knowledge is crucial for

policymakers, researchers, and investors to understand the underlying dynamics of the market and take

appropriate actions. For example, it has been shown that the connectedness of oil-based commodities

was affected by major crisis episodes (Chatziantoniou, Gabauer and de Gracia, 2022). Then, if a

specific event, or a class of events, consistently leads to increased connectedness among oil-based

commodities, policymakers may design measures to mitigate potential risks arising from such events

in the future. Second, since financial markets react quickly to news and events, for investors and

financial institutions, knowing the timing of shocks is a critical tool for effective risk management

(Malkiel, 2003; Elder, Miao and Ramchander, 2013). Sudden increases in connectedness may signal

higher contagion risk, potentially leading to amplified losses during periods of market stress (Diebold

and Yilmaz, 2012; Reboredo, 2014; Mohaddes and Pesaran, 2017). Third, understanding the timing

of shocks can also help in forecasting future connectedness patterns (Baruńık and Křehĺık, 2018).

If certain events consistently lead to changes in connectedness, predictive models can be developed

to estimate connectedness levels in response to similar events in the future. This information can

be valuable for long-term investment planning and decision-making. Fourth, the precise timing of

shocks is crucial for accurately assessing the extent of contagion in financial markets (Diebold and

Yilmaz, 2012; Greenwood-Nimmo et al., 2023). By pinpointing the timing of shocks, researchers can

differentiate between spurious correlations and actual contagion effects, leading to more robust and

accurate assessments of systemic risk.

In addition to the above motivations, the timing of shocks and changes in connectedness is also

linked to macroeconomic development as they can be indicative of broader economic trends (Nandha

and Faff, 2008; Kilian, 2009; Husain, Tiwari, Sohag and Shahbaz, 2019). Studying these patterns

can offer valuable insights into the health of the global economy, trade relationships, and potential

vulnerabilities in different sectors. This information can be used for macroeconomic analysis and

policymaking as the analysis of events driving volatility spillovers among oil-based commodities is, in

particular, important due to its complexity with respect to the economy. Crude oil and the products

refined from it play a crucial role in the global economy as they are a necessity mainly in the industrial,

agricultural, and transportation sectors (Energy Information Administration, 2022). Further, due to

the disproportionate geological endowments of oil formations, crude oil is one of the most traded

items in the world. Thus, increased volatility of oil prices does not only affects investors, but also the

economies of entire countries as, among other effects, oil supply disruptions cause a decrease in GDP,

currency depreciation, inflationary pressure, and trade disorders (Kilian, 2009; Ding and Vo, 2012;

Mohaddes and Pesaran, 2017; Togonidze and Kočenda, 2022).
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For all the reasons above, it is essential to understand the causes of volatility spillovers among

oil-based commodities. While numerous studies have sought to quantify and analyze the extent of

connectedness, a critical challenge lies in establishing the precise timing of shocks that drive these

interconnected relationships. In our analysis, we strive to provide a meticulous quantitative remedy.

In our analysis, we gathered prices of five energy commodities: crude oil, heating oil, gasoline,

diesel, and natural gas over the span from 1978 to 2022. Using daily realized volatility estimates of

the price returns of the commodities, we compute the rolling spillover index introduced by Diebold and

Yilmaz (2009, 2012), which represents the degree of volatility connectedness of the network on each

day of the studied period. Furthermore, we collected 891 news articles related to oil and categorized

them based on a repeating set of characteristics into geopolitical, economic, and natural events. Next,

we utilize the novel bootstrap-based test recently introduced by Greenwood-Nimmo et al. (2023),

which enables us to statistically assess the probability that the spillover index increased on a given

day when a specific shock (event) occurs.

Our analysis of the volatility spillovers among oil-based commodities and key driving events pro-

vides several new insights into the topic and contributions to the literature. In quantitative terms,

and with statistical confidence, out of about nine hundred events included in our dataset, we identified

over twenty historic events, after which the spillover index of oil-based commodities spiked, and re-

mained above the pre-event levels for at least one trading week following the event. After any of these

events, it was much riskier for investors and hedge funds to hold their position in any oil commodity.

The price movements of all oil-based commodities were too volatile and correlated, so investors are

better of by temporarily exiting the oil market. Our coverage of these events and dynamics of the

oil-based commodity market is complex and this type of analysis was not performed before on energy

commodities. Hence, in addition to the quantitative analysis of showing the link between events and

increases in connectedness, our analysis can also serve as a useful reference source of important events

linked to the oil and oil market with a subset of events exhibiting a (statistically) proven impact on

the energy market’s connectedness.

Further, in qualitative terms, we detected several characteristics that were prevalent among the

economically and statistically significant events. First, geopolitical events are more likely to cause

a sudden and lasting increase in volatility spillovers than economic events. Further, most economic

events identified by the test are linked to some geopolitical background. Finally, most of the events

after which the spillover levels increased share three common characteristics: they are negative, unex-

pected, and introduce fear of oil supply shortage. Although our dataset consists of mostly unantici-

pated events, not a single anticipated event passed the statistical significance threshold, which points

to the fact that unexpected outcomes are the main drivers behind increased volatility connectedness.
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Our findings are in line with the results of Greenwood-Nimmo et al. (2023) who show that unan-

ticipated and negative events reported in the seminal study of Diebold and Yilmaz (2009) are most

likely to cause a sudden increase in the spillover levels of equity markets. Our results show that this

relationship holds for oil-based commodities as well.

The rest of the article is structured as follows: Section 2 reviews previous work on connectedness

with accent on oil-based commodities. The relationship of crude oil with the global economy, and pre-

vious studies analyzing the effect of the events on oil returns and volatility are also presented. Section

3 presents the data and procedure leading to a set of realized volatility series for selected commodities,

and describes the extensive news dataset. Section 4 introduces the connectedness methodology and

the novel bootstrap-after-bootstrap test. Section 5 presents the results of the oil-based commodities

network connectedness and analyzes events identified by the bootstrap test. Section 6 summarizes our

findings.

2 Literature Review

2.1 Position in Global Economy

Oil is one of the most traded commodities in the world, and its price volatility represents a risk to

investors, but also to industrial producers. Crude oil categorizes as a fossil fuel, that needs to be

refined for further use. The International Energy Agency states that in 2021, 67% of crude oil was

used to make transportation fuels: gasoline, distillate fuels, jet fuel, and biofuel (Energy Information

Administration, 2022). Distillate fuels comprise diesel, utilized as fuel for construction equipment and

heavy vehicles, and heating oil, used in boilers, furnaces, and industrial heating. Furthermore, 27%

was used for industrial purposes, and the remaining 6% for residential, commercial, and electric power.

Natural gas also classifies as a fossil fuel, but it is used mainly for electricity generation and heating.

In summary, oil-based commodities and natural gas are crucial for the industrial, transportation,

and agricultural sectors. Higher oil prices can induce a rise in the cost of goods and services, and

subsequently higher inflation (Sadorsky, 1999). The steady rise in global aggregate demand for crude

oil tends to raise levels of CPI in the long-term (Kilian, 2009).

Apart from the industrial perspective, oil price volatility affects the global economy through a

number of other channels. Rising oil prices increase the cost of basic production, which decreases

economic output (Sadorsky, 1999; Brown and Yücel, 2002). Under the assumption that the price

increase is temporary, firms and households will borrow more, which puts upward pressure on inflation

(Mohaddes and Pesaran, 2017). Central banks will then need to increase interest rates in order to

handle inflation (Gogolin et al., 2018). During periods of moderate oil price volatility, firms tend to
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postpone investment decisions due to uncertainty (Henriques and Sadorsky, 2011). For some sectors,

the marginal cost increases, which results in lesser wage growth and higher unemployment (Brown

and Yücel, 2002; Gogolin et al., 2018). Kilian (2009) argues that increases in demand and oil-supply

disruptions significantly decrease real GDP. Furthermore, oil price fluctuations negatively influence

stock returns (Sadorsky, 1999). Oil prices can influence currency depreciation as well. When the price

of oil increases, oil importers are more likely to deplete the US dollar reserves, which depreciates the

currency (Salisu and Mobolaji, 2013). Conversely, if the dollar depreciates, oil exporters might be

prone to increasing oil prices in order to stabilize the monetary value of exports.

2.2 Volatility spillovers studies

The volatility of solely petroleum-based commodities was shown to be highly inter-connected, with

the strongest dependence between heating oil, gasoline, and crude oil (Baruńık and Vácha, 2012). Ji,

Zhang and Geng (2018) report that crude oil returns are among the main factors explaining natural

gas price volatility. Wang and Guo (2018) suggest that crude oil is a net volatility transmitter, and

the Brent Oil index is a volatility receiver. Furthermore, 25% of the volatility in the oil markets is

due to spillovers. Similar results hold for oil futures, where approximately 25% of heating oil and

gasoline futures volatility is transmitted from crude oil futures (Magkonis and Tsouknidis, 2017).

Lastly, futures act as volatility transmitters for spot prices for oil-based commodities (Magkonis and

Tsouknidis, 2017).

Crude oil is traded in various markets around the world, which advocates for analyzing volatility

spillovers between these markets. Zhang and Wang (2014) argue that volatility spillovers between the

oil markets of China, the U.S., and the U.K. are bi-directional and asymmetric. They also report that

there is an upward trend in the spillover index throughout the studied period, which is attributed

to the increasing influence of the Chinese oil market. Chang, McAleer and Tansuchat (2010) used

an asymmetric GARCH model to study volatility spillovers between four major crude oil markets,

namely West Texas Intermediate (USA), Brent (North Sea), Dubai/Oman (Middle East), and Tapis

(Asia-Pacific). The results show that Brent and WTI markets are net volatility transmitters. Similar

results were obtained by Liu and Gong (2020), where WTI produces the most net volatility (18,59

%) to the remaining three markets, and Brent seconds its position. A likely explanation behind these

results is that WTI and Brent are viewed as global benchmarks for oil prices. Ouyang, Qin, Cao, Xie,

Dai and Wang (2021) expand former studies by calculating the volatility spillovers of 31 global crude

oil markets, finding significant spillovers for both returns and volatility.

Since oil is the most traded commodity in the world, its price fluctuation clearly influences global

markets and macroeconomic indicators. While previously mentioned studies considered volatility
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spillovers solely within the oil market, there is a growing body of literature that explores spillovers

between oil and financial markets as well. For example, Kang, Hernandez, Sadorsky and McIver (2021)

find that crude oil is the best hedging option for the U.S. ETFs and Baruńık and Kočenda (2019)

show that crude oil functions as a hedge for the forex portfolio. The findings differ in the case of a

commodity portfolio as Diebold, Liu and Yilmaz (2017) conclude that crude oil has the highest net

connectedness out of 19 commodities, followed by heating oil, soybeans, and zinc.

Volatility spillovers between oil-based commodities and natural gas are already covered in the

literature by several studies. Baruńık et al. (2015) were the first to analyze spillovers between crude oil,

heating oil, and gasoline. Their findings suggest that the magnitude of spillovers was stronger before

the Great Financial Crisis (45,5%), rather than after it (58,3 %), emphasizing the often-mentioned

switch in the oil market’s fundamentals after the crisis. Similar results were found by (Kočenda

and Moravcová, 2023). All three commodities alter between receiving and transmitting spillovers

throughout the studied period. Crude oil was often found as the main volatility transmitter, although

the findings are not homogeneous (Mensi, Rehman and Vo, 2021; Gong, Liu and Wang, 2021). On

the other hand, Kočenda and Moravcová (2023) argue that spillovers from crude oil are not as large

as could be expected, which is in line with the findings of (Baruńık, Kočenda and Vácha, 2016).

The literature argues that technological innovations in oil and gas extraction, which enabled ef-

fective drilling of shale gas and tight oil sources, changed the way spillovers propagate through the

system. Gong et al. (2021) observe a 15% decrease in the spillover index as a result of the shale gas

revolution in 2006. Lovcha and Perez-Laborda (2020) mention that natural gas has become a net

volatility transmitter as a result of the shale gas revolution. Nevertheless, natural gas was generally

reported to be the best hedge, as it is mainly influenced by its own idiosyncratic volatility (Mensi

et al., 2021). Kočenda and Moravcová (2023) conclude that natural gas is responsible for 91,03% of

its volatility, while the rest of the commodities receive on average 50% of volatility from the system.

Diebold et al. (2017) also state that during periods of recession, natural gas has the weakest reaction

to economic events out of all energy commodities studied. Moreover, it has the smallest connected-

ness to and from other commodities. In most of the studies mentioned, the static spillover index is

approximately 40%, which shows moderate connectedness of the system.

The literature advocates for using time-varying and asymmetric spillover measures in case of oil

volatility spillovers. Kilian (2009) shows that oil price volatility spills to other markets with different

sign and magnitude, depending on time. Zhang and Wang (2014) argue that oil price volatility

spillovers affecting the Chinese oil market are asymmetric. The results hold for world oil indexes as

well (Baruńık et al., 2015). Xu, Ma, Chen and Zhang (2019) studied volatility spillovers between

oil, U.S., and Chinese stock market, and reported that spillovers are time-varying and asymmetric,
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which highlights the effect that various events can have on the spillover index. Furthermore, volatility

spillovers for petroleum-based commodities are clustered and persistent (Liu and Gong, 2020). Thus,

it makes sense to pair periods of clustered volatility spillovers on significant economic periods, such as

the Great Financial Crisis, the COVID-19 pandemic, or the war in Ukraine.

2.3 News studies

The possibility that news can affect oil prices and volatility has already been documented in the

literature. Kilian (2009) defines news-induced oil price change as a precautionary reaction to a possible

shortage of future oil supply. Kilian and Vega (2011) and Chan and Gray (2017) find no evidence of

oil and gas price reaction to news at daily or even monthly horizons. Contrarily, Elder et al. (2013)

state that oil price responds rapidly to economic news.Greenwood-Nimmo et al. (2023) applied their

new methodology for mapping past events to changes in the volatility spillover index on the same data

as in Diebold and Yilmaz (2009) and found that only 6 out of 19 events analyzed in the original paper

exhibit a contemporaneous effect on the spillover index, suggesting that the shock indeed propagates

with a lagged effect.

3 Data

3.1 Commodity Price Data

We selected five energy commodities to study oil connectedness: crude oil (oil), heating oil (ho),

gasoline (rb), diesel (lgo), and natural gas (ng). These commodities are highly interconnected and

one reason is that 60% of global crude oil stock is utilized in the production of heating oil, diesel, and

gasoline. Heating oil can also be produced as a side-product when processing crude oil into gasoline.

Furthermore, heating oil and natural gas can be regarded as substitutes in many economic processes.2

The data were retrieved through Refinitive Eikon Datastream3. We used the next month’s future

contracts from two exchanges: West Texas Intermediate Crude Oil, RBOB gasoline, NY Harbor Ultra

Low Sulphur Heating Oil, Henry Hub Natural Gas from New York Mercantile Exchange in the US, and

Low Sulphur Diesel from the Intercontinental Exchange in Europe. Eikon Datastream provides daily

open, close, high, and low prices for all 5 commodities. Range-based data for gasoline were available on

Eikon Datastream only after 2005. Thus, we utilized high-frequency intraday prices from TickData4,

2Casassus, Liu and Tang (2013) describe the production relationship between crude oil (input) and heating oil
(output), and the complementary relationship (in production) between gasoline and heating oil. In addition, heating
oil comes as a by-product when crude oil is cracked to produce gasoline, which implies another production relationship
between crude oil (input) and gasoline (output). Finally, about 40 and 20 percent of crude oil is refined into gasoline
and heating oil, respectively

3https://www.refinitiv.com/en/products/datastream-macroeconomic-analysis/
4https://www.tickdata.com/product/historical-futures-data/
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from which we calculate the range-based values for gasoline. Having obtained the set of daily measures,

we computed range-based realized volatility (RV) estimates using the method introduced by Garman

and Klass (1980), described in Section 4. The data was available from September 1, 1978 to December

16, 2022 for all oil-based commodities. Neither intraday nor daily natural gas prices are available

before April 3, 1990 (Natural Gas Intelligence, 2022). Therefore, we conducted two separate analyses

for two samples, one for solely petroleum-based commodities without natural gas, and the other with

all five commodities starting on April 3rd, 1990. The importance is being placed on the longer sample

with petroleum-based commodities. Significant differences between the results of the samples are

noted in Section 5.

The price data contained several anomalies. First, there were some occasions of prices being

reported on weekends and these days were removed. Apart from weekends, we removed Christmas

and New Year’s holidays: December 24 - December 26, December 31, and January 1 - 2. We also

removed US Federal holidays, during which the main exchange in our dataset is closed. Afterward,

we identified 486 days where the low (high) price was higher (lower) than the remaining range-based

prices, for at least one commodity. In these cases, we substitute the low (high) with another range-

based value.

In the end, there were 161 days where at least one commodity had missing data. Since the dates

were sparsely distributed, we imputed the values with a 5-day rolling average of RV. In the end, we

had 8785 days of RV values for petroleum-based commodities and 8141 values for natural gas.

Table 1: Summary statistics of returns

Returns Mean SD Median Min Max Skewness Kurtosis

oil -0.00010 0.02262 0.00080 -0.47 0.18 -1.94 34.34
ho -0.00008 0.02451 0.00077 -0.48 0.18 -1.99 28.81
lgo -0.00006 0.02352 0.00000 -0.54 0.13 -3.42 69.66
rb -0.00017 0.02635 0.00097 -0.47 0.25 -1.65 27.02
ng -0.00047 0.03615 0.00000 -0.46 0.32 -0.51 10.81

Notes: The table shows summary statistics of the daily returns for 5 selected commodities: crude oil (oil), heating oil (ho),
diesel (lgo), gasoline (rb), and natural gas (ng).

Table 2: Summary statistics or realized volatlities

RV Observations Mean SD Median Min Max

oil 8785 0.00036 0.00087 0.00020 0 0.03871
ho 8785 0.00042 0.00087 0.00024 0 0.04044
lgo 8785 0.00037 0.00150 0.00017 0 0.10330
rb 8785 0.00040 0.00131 0.00019 0 0.05679
ng 8141 0.00090 0.00173 0.00053 0 0.09658

Notes: The table shows summary statistics of the daily estimates of realized volatility for 5 selected commodities: crude oil
(oil), heating oil (ho), diesel (lgo), gasoline (rb), and natural gas (ng).

9



3.2 Oil-related Events Dataset

The dataset consists of 891 events related to oil prices spanning from January 1, 1987, to November

30, 2022. The events were divided into three general categories - economic, geopolitical, and natural

events. Any event happening on Saturday or Sunday (holiday) was moved to the upcoming Monday

(working day) due to the lack of price data on weekends (holidays), respectively. This strategy allows

us to effectively pair an event with the first date during which the market could react to it.

The event data sample was built in the following way. Initially, we curated a list of three sources:

prominent news organizations, international organizations, academic journals and books, which were

further searched for relevant events. In terms of the academic sources, we set up a Google Scholar

query to search articles and books containing relevant information. During the search, we first defined

a common part of the query in the following form: (’oil’ OR ’petrol’ OR ’petroleum’ OR ’tanker’)

AND (’history’ OR ’historical’ OR ’event’ OR ’news’ OR ’policy’ OR ’headline’ OR ’announcement’

OR ’chronology’ OR ’case study’). This common part of the query was employed for all three event

categories. In the second step, we formulated specific queries relevant to each type of event. For

geopolitical events, we added to the common part of the query a specific part in the following form:

AND (’geopolitical’ OR ’geopolitics’ OR ’war’ OR ’peace’ OR ’conflict’ OR ’battle’ OR ’election’ OR

’collapse’ OR ’coup’ OR ’crisis’ OR ’intervention’). Similarly, we conducted a search for economic

events by adding: AND (’macroeconomy’ OR ’macroeconomic’ OR ’economic’ OR ’economical’ OR

’economics’ OR ’OPEC’ OR ’sanction’ OR ’sanctions’ OR ’embargo’ OR ’merger’ OR ’trade’ OR

’market’ OR ’reserve’ OR ’reserves’ OR ’inventory’). Finally, for natural events, we added: AND

(’natural’ OR ’spill’ OR ’leak’ OR ’pollution’ OR ’flood’ OR ’earthquake’ OR ’fire’ OR ’hurricane’

OR ’weather’). These three queries returned approximately 3 870 000, 4 180 000, and 3 560 000

hits, respectively. For each of the 3 queries, we analyzed the first 200 results. Out of 600 academic

sources, we selected 45 for geopolitical, 17 for economic, and 25 for natural news events, which served

as sources of numerous oil-related events.

Further, the international organizations that were queried for relevant events featured the United

Nations, the Human Rights Watch, the Federal Trade Commission, OPEC, and NATO. As for the

news organizations, we selected Reuters, Bloomberg, NY Times, LA Times, Economic Times, the

Washington Post, BBC News, CBS News, CNN, The Wall Street Journal, Yahoo, Cato Institute,

The Guardian, and the MarketWatch. When possible, we searched the article database of mentioned

news and international organizations by filtering articles containing the words: ’oil’, ’petroleum’, and

’petrol’, with the published date of the articles being restricted to years between 1987 and 2022.

The news events assembled from the above three sources contained some duplication. In addition,

articles in academic sources were often event studies, from which we were able to extract more than
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one news event. Therefore, in the final step the news events were thoroughly cross-checked across the

above three sources to prevent their double-counting and the final selection resulted in 891 events.

Out of the three categories, geopolitical events (370) include all events of a political nature plus

wars. As such the geopolitical events cover the beginning or development of war conflicts, terrorist

attacks, missile launches, bombings, governmental elections, civil wars, political statements featured

in the news, meetings of political leaders, peace agreements, or strikes.5

Further, economic events (391) feature information about global markets, macroeconomic reports,

FED reports, OPEC decisions and production changes, the release of information concerning oil

reserves and inventory levels, and news of market conditions including speculations, announcements

of bids or mergers. The economic news events also cover important developments in the oil industry

such as the discovery of oil fields, investments into oil infrastructure such as oil platforms, tankers,

or pipelines, the release of oil reserves by the Strategic Petroleum Reserve, and news on embargoes,

sanctions, and tariffs.6

Lastly, natural events (130) mostly refer to natural disasters, accidental (tanker) oil spills, or the

spread of diseases (pandemic-related news).

In total, our news dataset consists of 370 geopolitical, 391 economic, and 130 natural news events.

In Table 3, we provide a summary of the events that are divided into the above three main categories

and further subdivided into 18 smaller groups characterized by a specific action impacting oil prices.

Further, the temporal event distribution in Figure 1 indicates that the sheer volume of news items

grew with time as the news coverage improved globally. As can be expected, most of the events

gathered are linked to or originate in oil-exporting countries. However, during our event search, no

restriction on the origin of the news was applied. Finally, in order to better understand the dynamics

and connections of individual events in our dataset, we provide a detailed review of the oil market

and its role in modern history in Appendix B, summarizing the historical development of the global

oil market.

4 Methodology

In our analysis, we employ two methodology frameworks. First, we compute the Spillover index that

represents a connectedness measure and enables us to quantify connectedness dynamics. Second,

we employ the Bootstrap-after-bootstrap test to statistically test a link between connectedness and

specific shock (event).

5We acknowledge that historical evidence of wars resulting from low or high energy prices (or their volatilities) might
be at odds with the assumption that oil-related prices are endogenous while events are exogenous. From our standpoint,
this is not an issue as the oil-induced war conflicts were already preceded by high oil price volatility, so the test will
rightfully not identify the events as causal.

6Many of the economic news events indirectly capture sudden changes in actual oil supply/demand shifts.
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Figure 1: Event distribution

Notes: The figure shows the count of events grouped into economic, geopolitical, and natural categories
per each year of the studied period.

Table 3: Events dataset summary

Category Group Count

geopolitical political 184
geopolitical war 66
geopolitical missile 40
geopolitical peace 52
geopolitical threat 23
geopolitical strike 5
economic market 147
economic maintain 65
economic boost 34
economic cut 46
economic merge 13
economic develop 12
economic inventory 21
economic sanctions 35
economic speculation 18
natural natural 67
natural spill 53
natural pandemic 10

Notes: This table provides a summary of the events dataset. The events were divided into three main categories: economic,
geopolitical, and natural, and into 18 smaller groups.
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4.1 Spillover index - connectedness measure

We compute the rolling spillover index introduced by Diebold and Yilmaz (2009, 2012) that is based

on covariance-stationary vector autoregressions (VAR). The spillover index, or connectedness measure,

represents the degree of volatility connectedness of the assets put in the network at each point in time.

The construction of the spillover index is thoroughly described in the above seminal papers and it

is well-known in the field. For that, we formally introduce only the key part of the connectedness

measure in the subsequent text, and in Appendix A, we describe the methodology in full.

In order to use the VAR model for the spillover index calculation, we first need to obtain daily

volatility estimates of the selected commodities. We use a range-based realized variance measure first

introduced by Garman and Klass (1980). For Oit, Cit, Hit, Lit being the natural logarithms of daily

open, close, high, and close prices for commodity i on day t, the range-based realized variance is

computed as:

σ̂i,t
2 = 0.511(Hit − Lit)

2 − 0.019[(Cit −Oit)(Hit + Lit − 2Oit)

− 2(Hit −Oit)(Lit −Oit)]− 0.383(Cit −Oit)
2

RealV oli,t =
√
σ̂i,t

2

(1)

The range-based volatility is easy to compute, requires only four inputs per day, and is comparably

efficient as high-frequency estimators (Demirer, Diebold, Liu and Yilmaz, 2018). Moreover, this

estimate is robust to certain microstructure noise and has been frequently used as a volatility estimate

for network connectedness analysis (Diebold and Yilmaz, 2009; Diebold et al., 2017; Demirer et al.,

2018; Wang and Guo, 2018; Kočenda and Moravcová, 2019).

Having obtained a vector of daily realized volatility estimates of m variables xt = (x1t, x2t, ..., xmt),

we can write VAR of lag p in its reduced matrix form as:

xt =

p∑
j=1

Ajxt−j + ut, (2)

where xt is an m× 1 vector of realized volatilities, Aj is a m×m matrix of VAR parameters for

lag j = 1, . . . , p, ut is an m × 1 of disturbances, so that ut ∼ N(0,Σ). The matrix Σ is a positive-

definitive covariance matrix of size m×m, with unknown distribution. We also explicitly remove the

static mean from the equation, as it does not affect variance decomposition.

The vector moving average representation of the VAR model enables us to decompose the variance

of the forecast errors from the model into parts using a generalized forecast error variance decompo-

sition (GFEVD). Denoting the m×m h-step ahead matrix of GFEVD as θ = {θi←j}hi,j . Diebold and

Yilmaz (2009) and Diebold and Yılmaz (2014) measure the static total spillover index (SH) in the
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following way:

SH = 100×

∑M
i,j=1
i ̸=j

θ̃
(H)
i←j∑M

i,j=1 θ̃
(H)
i←j

= 100× ι′θι− trace(θ)

ι′θι
%, (3)

where ι is an m× 1 vector of ones.

The calculation of the rolling spillover index is identical to the static one. Given observations at

time t = 1, ..., T , we simply choose a rolling window of size w, and compute the forecast error variance

matrix θ̃(h) using only the last w observations. In the end, we obtain θ̃
(h)
t , t = w...T matrices, from

which we can calculate the rolling total spillover index; choice of the values for the rolling window and

forecast horizon is described in detail in Section 5. The spillover index computed on rolling windows

is crucial for our analysis as it captures the time variation attributable to historical events.7

4.2 Bootstrap-after-bootstrap test

The bootstrap-based test introduced by Greenwood-Nimmo et al. (2023) enables us to statistically

assess the probability that the spillover index increased on several consecutive days after some (en-

dogenously detected) event occurred. Until recently, the changes in connectedness were paired with

specific events based on a simple visual inspection. In other words, the timing of an event is matched

with a sudden change in the spillover index magnitude without formally testing the link between

them (Diebold and Yilmaz, 2009; Baruńık et al., 2016; Diebold et al., 2017). Visual inspection is very

imperfect as it is often only feasible for long-lasting spillover index changes. However, the events in

our dataset can be expected to have abrupt and short-term impacts. Furthermore, the test allows for

the assessment of each event individually, which allows for more granular categorization and analysis

compared to aggregated risk indices such as the Geopolitical Risk Index (Mei, Ma, Liao and Wang,

2020).

An important feature of the methodology is that the test does not rely on asymptotic properties.

This would pose problems in the case of the rolling windows estimation since the window is often set

relatively small. This issue can be treated using residual bootstrapping to construct some empirical

interval of the spillover index. Nevertheless, Kilian (1998) shows that the traditional methods of

producing confidence intervals for impulse responses have biased results, which is especially true

when estimating impulse responses on small samples for long horizons. The reason for the low interval

accuracy lies in the bias of the coefficients of the VAR model. Even a small bias in the slope coefficient

can result in the confidence band, not including the initial estimate. Thus, we first need to correct

7An alternative to the Diebold and Yilmaz (2009) approach is the TVP-VAR based spillover measure by Antonakakis
and Gabauer (2017). We acknowledge that the TVP-VAR approach removes the need to set a window size and allows
the use of the full length of the price data. However, the bootstrap-based test of Greenwood-Nimmo et al. (2023) that
we employ corresponds to the seminal approach of Diebold and Yilmaz (2009) that employs rolling windows.
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the coefficients Aj in Equation 7 for bias, which can be done yet again by bootstrapping. Following

Kilian (1998), Greenwood-Nimmo et al. (2023) propose a non-parametric bootstrap-after-bootstrap

procedure. For the sake of accuracy and consistency, we use the formal notation as in a seminal

work of Greenwood-Nimmo et al. (2023) to describe the bootstrap test methodology employed in our

analysis:

1. Begin with the first rolling sample. Estimate the VAR model and save the resulting parameter

matrices Âj , residuals ut, and value of the spillover index SH .

2. Use the initial parameter space Âj along with u
(b)
t residuals obtained either from an assumed

multivariate distribution or sampled from residuals of the initial VAR model. Obtain B samples

x
(b)
t with:

x
(b)
t =

p∑
j=1

Âjx
(b)
t−j + u

(b)
t , (4)

3. Using the same rolling sample, re-estimate the VAR model B times for each set x
(b)
t , and B sets

of parameters Â
(b)

j , j = 1, ..., p. For each parameter set, calculate the corresponding value of the

spillover index Ŝ(b), b = 1, . . . , B.

4. Calculate the bias in given rolling window as Υ̂ = B−1
∑B

b=1 Ŝ(b) − Ŝ.

5. Repeat steps 2 to 4 B times, but subtract the bias Υ̂ from each estimate Ŝ(b). The resulting

spillover values represent a bias-corrected distribution for a given rolling window.

6. Repeat step 1 to 5 for each rolling window, each time saving the final distribution.

Having obtained the empirical spillover distribution for each rolling window, we can proceed with

the methodology of statistical inference for the effect of events. Suppose some exogenous event happens

in the final observation of the rolling sample re. Then the probability that the event has increased the

spillover index in the following periods re + j is evaluated as the probability that the distribution of

spillover index S(b)
re+j exceeds the mean spillover index from the window preceding the time of event

Sre−1 = B−1
∑B

b=1. This can be formalized as:

Pr
(
Sre+j > Sre−1

)
= B−1

B∑
b=1

I
{(

Ŝ(b)
re+j − Sre−1

)
> 0

}
, (5)

where I {·} is a Heaviside function equal to 1 if the condition in brackets is met and 0 otherwise. By

setting j equal to 1− 5, we can draw statistical inference of the event 1− 5 days after the event takes

place, respectively. A natural limitation for values of j is that some events are densely distributed

in time. Therefore, it is not possible to differentiate between the effects of two subsequent events
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for longer horizons.8 Finally, simply reversing the equation in the Heaviside function would allow

us to identify events resulting in decreased spillovers in the network. Nevertheless, the economic

significance of such an analysis is minor and Greenwood-Nimmo et al. (2023) in their test focus on

spillover increases. Hence, we concentrate on events prompting a rise in the overall connectedness.

5 Results of the event-driven connectedness and robustness checks

5.1 Dynamics of the total connectedness

We optimized the lag order of the vector autoregressive model according to the AIC. Since the AIC

values were very similar for all lag orders, we parsimoniously decided to choose lag 1 for the VAR

model. When dealing with daily time series, it is conventional to use a 100- or 200-day rolling window

(w) to compute the spillover index. Similar logic is applied for the horizon (H) on which the forecast

error variance decomposition is calculated. Since our task is to capture the effect of events, it is

favorable to have a more volatile rolling spillover index. Therefore, we chose a value of 100 for both

the rolling window and the horizon.

The overall spillover for the oil spillover network is 45.23%. Comparable results were obtained by

Baruńık et al. (2015), who arrived at an overall spillover index of 50.6% for a network made of crude

oil, heating oil, and gasoline. The idiosyncratic volatility spillover is the strongest for all commodities,

implying that the volatility of each commodity is mostly influenced by its own past shocks. Crude

oil appears to be a net spillover transmitter, while diesel and gasoline are mostly net receivers. The

result is in line with Baruńık et al. (2015) and Gong et al. (2021) who find that crude oil transmits

most of the spillovers. Heating oil is neither a transmitter nor a receiver. The strongest pairwise

connectedness can be found between gasoline and crude oil. Crude oil is responsible for 25.88% of

spillovers to gasoline. The weakest link is between gasoline and diesel, where shocks to gasoline are

explainable by shocks to diesel from only 8%.

Figure 3 shows that the rolling spillover index ranges from 5% to 75% throughout the studied

period. Similarly to Baruńık et al. (2015), we observe a fundamental change around the years 2000

and 2008. The average spillover level was lower before the year 2000, likely because the energy

commodities were not yet financialized enough, they were not part of broader indices, and they were

not traded by speculators. On the other hand, the geopolitical tensions in the Middle East along with

the fear of sanctions caused sudden spikes in the index. After the invasion of Kuwait and the Persian

Gulf War in the 1990s, oil prices stabilized, which lowered the average spillover index back to levels

around 35%. Repeating war conflicts and sanctions led to the depletion of oil inventories in the US

8We can not control for the persistence of events by setting a hard threshold of j. Persistence can be assessed with a
novel methodology of Barunik and Vacha (2023) and is intentionally left for further research.
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Table 4: Average connectedness for oil-based commodities

rb oil ho lgo FROM

rb 55.82 25.88 10.23 8.07 11.05
oil 16.69 54.50 18.12 10.69 11.38
ho 11.22 19.94 51.95 16.89 12.01
lgo 10.83 13.65 18.70 56.82 10.79

TO 9.69 14.87 11.76 8.91 45.23

Notes: This table shows the average connectedness of the oil-based commodities network from 1979 to 2022. The commodities
included are crude oil (oil), heating oil (ho), diesel (lgo), and gasoline (rb). The 11.38 ’FROM’ connectedness for crude oil
means that 11.38% of spillovers are transmitted FROM other commodities to crude oil. Similarly, 9.69% TO spillovers for
gasoline means that all other commodities on average 9.69% spillovers are transmitted from gasoline TO other commodities.
In order to read the pairwise connectedness, we determine FROM which commodity we want to measure the spillovers
(columns) and TO which commodity the spillovers should be transmitted (rows). Thus, 25.88% of spillovers TO gasoline are
transmitted FROM crude oil.

from 1995 to 1996, which also affected the production of gasoline (Baruńık et al., 2015). During this

period, the spillover index rose from 30% to 50%, before returning to low levels in February 1997.

Later in 1997, the spillover index increased again from 20 to 50%, which is likely attributable to

the Asian financial crisis followed by regional crises in Russia and South America (Kilian, 2014). The

steadily increasing demand for oil combined with some major oil production disruptions in Venezuela

and Iraq kept the spillover index volatile until 2003. After 2003, we see an indisputable rise in overall

connectedness but also a decrease in the volatility of the index. The findings are consistent with those

of Baruńık et al. (2015). As argued in Section 3, the stabilization of the index at higher levels is likely

due to the progressive financialization of petroleum commodities, further increase of global aggregate

demand, and technological development in oil extraction methods. Hence, the connectedness was

much more volatile before 2008 but the Global Financial Crisis itself did not significantly influence

the connectedness. Although the demand for oil commodities decreased substantially, and oil price

plummeted from $134 in June 2008 to $39 in February 2009, the spillover index only decreased from

60% to 50%.

The index resided around 70% in the years 2010-2012, which is likely linked to the events that

occurred during the Arab Spring, mainly the Libyan uprising in 2011, and political unrest in Iran

during 2012 (Baumeister and Kilian, 2016). After 2012, OPEC managed to hold a dominant position

in the shale oil industry by over-producing crude oil. Given the abundance of oil on the market, the

spillover index decreased to 20% at one point in 2014, for the first time since 2001. Most likely, shale

oil has played a moderating role in the development of the oil volatility connectedness during the years

2016 and 2022 (Naeem, Balli, Shahzad and de Bruin, 2020; Billah, Karim, Naeem and Vigne, 2022).

The China-US trade war led in years 2018 and 2019 decreased the demand for oil in China -

the biggest oil consumer in the world. This caused the spillover index to fluctuate around 50% with

moderate volatility. Multiple production cuts by OPEC between 2016 and 2020 also pushed oil prices
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higher during this period. The spillover index peaked in March 2020 due to the COVID-19 pandemic

and the Russia-Saudi oil price war. In February 2022, Russia invaded Ukraine, which prolonged the

period of extreme spillovers until the end of April 2022. After the European Union leaders decided to

ban most Russian oil and gas export, and Ukraine has shown the first signs of successful resistance,

the spillover index decreased to 20% again.

5.2 Impact of Events

We ran the bootstrap-after-bootstrap test to obtain the spillover distributions for each of the rolling

windows. The number of bootstrap samples to generate was set to 1000 for both the bias correction

and for generating the final spillover distribution. During the computation of the bootstrap samples

in step 2 of the bootstrap test, we sampled the disturbances from a normal multivariate distribution

with a mean equal to 0 and standard errors equal to the deviation of the respective asset. Since we

iteratively generate one hundred auto-correlated observations, the disturbance inflates the variance of

the results substantially. The spillover resulting from this iterative approach is almost always lower

than the initial spillover estimate Ŝ. Nevertheless, the difference between the bias-corrected mean of

spillovers and the initial spillover has a normal distribution with a mean close to zero and a standard

deviation of 0.15. Thus, the correction is never too extreme.

In order to consider a change in spillover levels to be statistically significant, we require at least 95%

of values in the next day’s spillover distribution to be above the mean of yesterday’s mean spillover.

Under the null hypothesis that the spillover index did not increase in some period after the event, the

probability of drawing more than 95% of values higher than the previous mean is less than 5%. This

mimics the conventional significance level equal to 0.05 in a one-sided hypothesis testing. Since we

gathered 891 events with mostly distinct dates, and the test identified 122 dates, we can expect some

events to have a similar date as one of the test dates even though it is not responsible for the increase.

This spurious correlation is the reason why we can not draw causal inferences in all cases.

We require the events to influence the spillover index continuously for at least 4 days after the day

of the event. In the scope of this work, events are labeled as such if they exceed the threshold for

j ∈ (1, 2, 3, 4). In other words, the spillover index needs to be significantly above the pre-event value

up to day 5 since the event. When an event of this description appears, oil-based commodities should

be viewed as a risky investment as volatility will be increasingly shared between them. Only 7 out of

the 29 events did not have an effect lasting for 4 days after the event, which leaves us with 22 events

on which we focus in our analysis. The event distribution in time is shown in Figure 3.

Further, in Figure 2 we show that, in general, the mean spillover changes are randomly distributed

over time. The plot pattern implies that the spillover increases are not becoming more pronounced
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with time. Despite the general pattern, the grey bars depicting events that did pass the significance

threshold of the test indicate that economic events exhibit a rather stable development associated with

mild spillover increase of around 10%, while geopolitical events exhibit more varying impacts on the

volatility connectedness.

Figure 2: Absolute spillover changes in time

Notes: This figure shows the mean change in spillover of all events. For each event, the mean change is
calculated as the difference between the means spillover in the 5 days following the event, and the spillover
value prior to the event. These mean changes are then average over all years. The grey bars are means of
events that passed the significance threshold, while the black bars are means of the other events.

Figure 3: Connectedness dynamics of oil-based commodities

Notes: This figure shows the evolution of the overall connectedness among oil-based commodities.
Spillovers are calculated on the rolling window of 100 days. The vertical lines represent the events that
passed the conventional statistical significance threshold.

In the following three sub-sections, we present events that were found to impact connectedness at

statistically significant levels. We present those events one by one in order to (i) illustrate their nature
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in detail, (ii) to provide sufficient background on their potential to impact connectedness, and (iii) to

draw some generalizations.

5.2.1 Geopolitical events

Table 5: Test results: Geopolitical events

Date Event Description Window
Event Count (%) Threshold

passed
Chance of
CausalityJ=0 J=1 J=2 J=3 J=4

15.05.1988
Soviet Union begins removal
of its troops from Afghanistan

100 100 100 100 100 100 Yes Low

15.05.1988
Iraq Bombs 5 Huge Tankers
at Iran Oil Site

100 100 100 100 100 100 Yes High

09.01.1991 Geneva Peace Conference
100 100 100 100 100 100 Yes

High
200 100 100 100 100 100 Yes

19.08.1991 1991 Soviet coup d’etat attempt
100 100 100 100 100 100 Yes

High
200 38,8 34,6 38 38,4 35,7 No

27.11.1992 Venezuela: coup against government
100 58.3 100 99.5 99.1 99.2 Yes

High
200 2,2 3 3,1 2,5 2,8 No

20.05.1996 Oil-for-Food Programme
100 100 100 100 100 100 Yes

High
200 100 99,8 100 100 100 Yes

12.10.2000 Blast kills sailors on US ship in Yemen
100 80 97 96,9 96 96,8 Yes

Moderate
200 55,5 56,9 52 47,7 48,3 No

08.02.2002 Iraq obstructs UN inspectors
100 47,6 100 99,9 99,8 100 Yes

High
200 51,1 44,2 44,6 45,2 41,5 No

03.12.2002 General strike in Venezuela begins
100 100 100 100 100 100 Yes

High
200 47,7 43,9 46,5 43,1 45,5 No

01.05.2003 US claims victory in Iraq
100 52,4 51,5 49 47,7 42,1 No

Low
200 53,3 100 100 100 100 Yes

17.03.2003
British Cabinet Minister resigns over
plans for the war with Iraq

100 26,3 82,2 68,9 94,7 100 No
Low

200 99,3 100 100 100 100 Yes

17.03.2003
US: Bush gives Saddam Hussein
and his sons 48 hours to leave Iraq

100 26,3 82,2 68,9 94,7 100 No
High

200 99,3 100 100 100 100 Yes

20.03.2003
Start of ground invasion in Iraq
by US-led coalition

100 88,5 99,8 99,8 99,7 99,3 Yes
High

200 100 100 100 100 100 Yes

19.08.2003 Bomb attack on UN headquarters in Iraq
100 100 100 100 100 100 Yes

Moderate
200 44 43,2 48,1 54,1 52 No

14.08.2007
Iraq: biggest attack since
the beginning of the war

100 44,8 100 100 100 100 Yes
Moderate

200 42,5 41,4 46,2 48,6 46,8 No

23.02.2011
Arab Spring: Half of Libya oil
production shut down

100 75,7 100 99,1 99,6 99,5 Yes
Moderate

200 18 65,3 54,9 55,4 58,6 No

21.08.2013
Syrian Opposition Claims
1300 Killed in Chemical Attack

100 57 64,1 58,8 66,1 34,6 No
Moderate

200 55,8 100 100 100 100 Yes

20.06.2014 Troops Trapped in Iraq’s Key Refinery
100 58,9 100 100 100 100 Yes

Moderate
200 58 32,9 26,1 99,1 98,6 No

23.06.2014 Iraq confirms oil refinery loss
100 100 100 100 100 100 Yes

Moderate
200 25,8 18,7 96,3 96,5 96,6 No

17.07.2015 Last bid to kill Iran nuclear deal blocked in Senate
100 99,7 98,7 99,2 98,7 99,6 Yes

High
200 51,2 45,5 48,7 49,1 50,5 No

28.03.2017
Donald Trump signs Energy
Independence executive order

100 100 100 100 100 100 Yes
High

200 43,3 46,5 46,3 51,7 48,7 No

20.01.2021 Biden set to rejoin Paris climate accord
100 52,1 53,5 53 56,8 63,4 No

High
200 99 99,6 99,8 100 99,8 Yes

Notes: This table features all geopolitical events that passed the conventional statistical significance threshold. Each event
shows evaluation for a window length of 100 and 200 days. The ’Event Count’ columns show the percentage of the 1000
bootstrapped values that were higher than the previous mean value. To deem the effect continuously influential, we require
the event to pass the threshold for 1 to 4 days after the event occurs, which corresponds to one trading week. We do not
include the effect on the day that the event occurred to control the speed of information flow among news channels. The
last column contains our results credibility assessment based on the analysis in Section 5.

As apparent from Table 5, geopolitical events were notably more influential on the spillover index

in comparison with the economic and natural event categories. Although the ratio of geopolitical and

economic events was balanced, we identified 17 geopolitical and only 4 economic events. Two of the

significant events appeared in the news on May 15, 1988. First, the Soviet Union publicly announced
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the removal of its troops from Afghanistan. Although this act likely boosted the expectations for

Soviet development, the decision to withdraw was already brought to the public by February 1988, so

this event was likely not influential on the spillover index. However, on the same day, Iraq bombed

Iran’s offshore terminal and damaged the Seawise Giant supertanker, which is the world’s largest ship

ever built (Torbat, 2005a). Four other large tankers were damaged as well. The fear of losing that

much transporting capacity likely triggered an increase of connectedness in oil-based commodities.

The Geneva Peace Conference that took place on December 1, 1991 triggered a significant spike

in connectedness. The spillover index increased from 31% to 75% and remained around 50% for the

subsequent month. On that day the representatives of Iraq and the US failed to negotiate a peaceful

solution for the Iraqi invasion of Kuwait. The conference was viewed as the last chance to secure peace

in the Middle East (Freedman and Karsh, 1993). The Geneva Peace Conference is a good example of

an event with an unanticipated outcome and effective market reaction. A week after the conference,

Operation Desert Storm was launched, and the US immediately released 17.3 million barrels of oil

from the Strategic Petroleum Reserve. Nevertheless, these events did not affect the connectedness.

Kilian and Zhou (2020) reach a similar conclusion regarding the release from the Strategic Petroleum

Reserve, stating that there is no clear evidence of the oil reserves having prevented a larger increase

in the oil price during that period.

After the Soviet army withdrew from Afghanistan, Gorbachev became president and introduced

market reforms meant to modernize the Soviet Union. The Soviet coup d’etat attempt happened on

August 19, 1991. The index spiked to levels of 50% and stayed there for more than a year. The

Venezuelan coup d’etat triggered another significant spike in connectedness on November 27, 1992.

Both coups were unexpected and happened in major oil-exporting countries, which is likely the reason

behind the spike.

OnMay 20, 1996, the United Nations released a memorandum of understanding with the Government

of Iraq regarding the Oil for Food Program. The program initially enabled Iraq to sell crude oil worth

1 million US dollars. The proceedings of this sale could only be used for ensuring the humanitarian

needs of Iraqi citizens, although it was later shown that the program was subject to corruption (United

Nations, 1996; Hsieh and Moretti, 2006). The program was set in response to the sanctions placed on

Iraq after it invaded Kuwait in August 1990. The spillover index increased from 28% to 35% following

the announcement and increased steadily through the rest of the year 1996.

On December 16, 1998, Iraq failed to comply with UN inspectors in search of weapons of mass

destruction, which broke another resolution declared by the UN (Conversino, 2005). The United States

aimed to resume the inspection in 1988. The US was inclined to continue with the inspections after

the 9/11 attacks in 2001, as the US expected a connection of Iraq to Al Qaeda. On February 8, 2002,
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the United Nations failed to make an agreement with the Iraqi officials regarding the return of the

inspectors (Squassoni, 2003). This was followed by a mild but permanent increase of the spillover

index from 40 to 50%.

As argued in Section 3, oil prices in the years 2002 and 2003 were mostly driven by oil supply

disruptions in Venezuela and the war against Iraq. Both these events were identified by the test.

First, the state-owned Venezuelan oil company Petróleos de Venezuela was a key point during the

protest. The company was shut down for more than a month due to general protests across the

country. Consequently, oil supply and inventories declined, and oil prices increased by 20% in one

month (Kilian and Murphy, 2014). The spillover index increased by 15 points when the strike in

Venezuela began on December 4, 2002. Second, the invasion of Iraq was based on the results gathered

by UN inspectors. Although the inspectors did not find weapons of mass destruction, they provided

proof that Iraq continued with its nuclear program. Despite that there was not enough evidence to

gain approval from Russia and China, the United States initiated military action against Iraq on 20

March 2002 (Bassil, 2012). Since the invasion was anticipated days before, its effect on the market

and connectedness was mild and short-lasting.

The UN headquarters in Iraq was bombed on August 19, 2003. The head of the UN mission in

Iraq was killed during the attack, which likely raised concerns about the future course of the mission.

In any case, given that the index stabilized at levels between 50 to 60% for several years after the

attack, it is not feasible to attribute all the behavior to just this event. August 14, 2007, brought

the biggest attack since the beginning of the war in 2003. There were 580 deaths and 1600 injuries,

making it the second deadliest act of terrorism of all time (Bassil, 2012). Once again, the event does

not directly influence oil supplies, but it likely caused fear over the development of the war conflict.

The connectedness increased significantly by 10 basis points.

The attacks of September 11, 2001, did not trigger a direct and permanent increase in the connect-

edness of oil commodities. As major US commodity exchanges were closed for several days after the

attacks, the index decreased in value for the subsequent week due to the substitution of the missing

data as described in Section 3.

On February 23, 2011, a large Italian oil company operating in North Africa was forced to shut

down its 150,000 barrels per day production due to the Libyan uprising (Baumeister and Kilian, 2016).

A shift in production of that magnitude combined with the fear that the protests would quickly spread

to other countries in North Africa increased the connectedness by 15 percentage points up to 75%.

The Arab Spring was the first period during which the spillover index for oil-based commodities stayed

around 60% for a prolonged period of time. None of the remaining events connected to the civil war

in Syria, Libya, or the protests in Egypt, affected the connectedness enough to cause another shift in
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2011.

The last important event in Iraq, which caused an upward shift in the connectedness of oil-based

commodities, concerned the Iraqi largest oil refinery in June 2014. On June 20, Iraqi troops fought

with ISIS over the control of the vital Baiji oil refinery. The refinery was mainly used to produce

fuel for internal consumption. Thus, its control was a key strategic point in the conflict. The news

speculated about Iraqi troops being trapped inside the refinery, which increased the spillover index

by 18 points. On Monday, June 23, Iraqi officials publicly confirmed that the Baiji refinery had been

seized by ISIS (CNN, 2014). It is impossible to say, which of these events caused the increase in

connectedness, but the capture of the Baiji refinery as a whole was most certainly influential.

After the Middle Eastern geopolitical tensions finally settled, the spillover index started to be

influenced by events more political in nature. One such event is the Iran Nuclear Agreement introduced

under the presidency of Barack Obama. On May 17, 2015, the US Senate blocked the legislation meant

to disapprove the accord for a third time, which officially secured its subsequent implementation

(Zengerle, 2015). Even though the Nuclear Plan was publicly debated since 2013, only this decisive

event had an effect on the connectedness. Iran agreed to limit its nuclear development and allow

external monitoring. In exchange, Iran was able to recover approximately $100 billion worth of assets

frozen in banks overseas (Sterio, 2016). Moreover, various economic sanctions would be lifted, which

include the sale of Iran’s crude oil. The spillover index increased by a modest 5 percentage points on

the day of the news.

Another important policy with regards to oil volatility spillovers was Obama’s Clean Power Plan. It

was not the implementation that caused volatility spillovers, but rather the order to undo the measures

connected to the Clean Power Plan given by Donald Trump on March 28, 2017. In an attempt to boost

the coal industry, Trump loosened the limit on methane and carbon emissions released during coal

and gas production (Bomberg, 2017). The connectedness increased from 52% to 64% in a single day.

Interestingly, comparable events such as the renegotiation of the Dakota Access Pipeline on January

24, 2017, the withdrawal from Paris Climate Agreement announced on June 1, 2017, or quitting the

Iran Nuclear Agreement on May 8, 2018, did not have any immediate impact on the index.

Almost all of the geopolitical events identified by the test are connected to war conflicts in the

Middle East, and Iraq specifically. The events listed are either the first signs of new war conflict, acts

of terrorism, or concern with the functioning of important oil facilities. It is important to note that

after 2014, tensions in the Middle East are much less frequent. A common trait among the events

listed above is that they introduce concerns over the scarcity of oil. Both damaged oil facilities and

fear of entering a war with an oil-producing country represent an increased probability to cause supply

disruptions, and consequently increase the connectedness of oil-based commodities.
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Unsurprisingly, none of the 52 events that fall into the ’peace’ group increased the spillover in-

dex significantly according to the test results. We observe that the end of war conflicts or peace

arrangements are linked with a gradual decrease of connectedness. Similarly, events published in ar-

ticles without an effectuate topic, such as threats of attacks, deadlines, and warnings, also do not

cause an increase in the connectedness of oil commodities. In conclusion, sudden and unexpected war

operations or terrorist attacks are the most likely to cause an upward shift in connectedness.

5.2.2 Economic events

Table 6: Test results: Economic events

Date Event Description Window
Event Count (%) Threshold

passed
Chance of
CausalityJ=0 J=1 J=2 J=3 J=4

27.11.1992 OPEC meeting: increase in production quota
100 58,3 100 99,5 99,1 99,2 Yes

Low
200 2,2 3 3,1 2,5 2,8 No

11.02.2002 Russia increases production and oil exports
100 99,9 99,9 99,7 100 100 Yes

High
200 41 42,8 42,9 39 39,4 No

03.06.2004 OPEC agrees to raise output
100 92,1 92,4 83,9 82,3 76,4 No

Moderate
200 100 99,8 100 100 99,5 Yes

22.06.2009 World Bank Report
100 43,2 99,1 96,2 97,7 95,9 Yes

Moderate
200 46,4 54,5 58,3 56,5 53 No

27.03.2017
OPEC, non-OPEC to look at extending
oil-output cut by six months

100 50,5 100 100 100 100 Yes
High

200 44,8 42,4 45,2 45 51 No

Notes: This table features all economic events that passed the conventional statistical significance threshold. Each event
shows evaluation for a window length of 100 and 200 days. The ’Event Count’ columns show the percentage of the 1000
bootstrapped values that were higher than the previous mean value. In order to deem the effect continuously influential, we
require the event to pass the threshold for 1 to 4 days after the event occurs, which corresponds to one trading week. We
do not include the effect on the day that the event occurred to control the speed of information flow among news channels.
The last column contains our results credibility assessment based on the analysis in Section 5.

Events of an economic nature are much less prevalent in the set of significant events. Official deci-

sions to boost, maintain, or cut oil production had an insufficient amount of hits to draw conclusions

about the difference in the effect of these decisions. Among the 145 events concerning changes in oil

production, only three passed the test threshold. Specifically, it is two decisions to boost production

and one decision to cut it. No decision (event) to maintain production passed the test and although

the decision to maintain oil production is the most frequent, it never raised the spillover index.

The first production boost that coincides with a spillover index increase occurred on November

27, 1992. However, since the boost was not accompanied by any unexpected circumstances, the

previously mentioned coup in Venezuela that broke out on the same day is more likely to be causal on

this day. The next production boost did not come from OPEC, but from Russia. Until 2001, Russia

acted mostly in accord with OPEC decisions and cut their petroleum exports along with OPEC. A

change came during the 2000s when Russia increased their exports from 300 million tons (in 2000)

to 500 million tons in 2009 (Vatansever, 2010). While OPEC cut production in an attempt to keep

petroleum prices high, Russia expanded into Europe (Hill and Fee, 2002). By 2002, Russia exported

over 7 million barrels daily. In an environment of extreme oil prices and production cuts, the decision
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to boost exports could have been influential on the spillover index. Again, Russia’s decision to boost

production while the rest of the oil producers attempted to decrease their production presented itself

as negative and unexpected news that introduced uncertainty. On March 26, 2017, major OPEC and

non-OPEC oil exporters debated an extension of production cuts from December 10, 2016. While the

initial cut had almost no effect on the spillover index, the possibility of an extension for an additional 6

months raised the index from 52% to 64% despite the possibility of the extension being communicated

only in the form of the initial announcement. The cut was slightly above average compared to other

historical production changes. Thus, the differentiating factor against other scheduled OPEC meetings

seems to be the uncertainty. While it was expected that the cut would be extended in an earlier draft

of the statement, the final version pushed the decision to April (Soldatkin and Gamal, 2017). The

crude oil price increased by 12.5% in the weeks following the statement.

Apart from the production change announcements, there was only one other economic event that

significantly increased oil volatility spillovers. The World Bank released an analysis of global trade

and the economic outlook of developing countries on June 22, 2009. According to the report, the

global output was supposed to fall by 2.9% and the world trade by 10%. The capital flow needed to

support developing countries was expected to drop by nearly 50% in 2009 (World Bank, 2012). The

stock market reacted negatively to the news, with commodity prices to follow. There are multiple

reasons why this economic outlook could affect the connectedness of oil-based commodities. First,

crude oil and its products constitute a non-negligible part of global output and world trade. Second,

a majority of countries in the Middle East and South Africa are still developing economies. Thus,

the decrease in capital inflow to these countries could worsen the condition for efficient oil extraction

and transportation. The spillover index reached a local minimum of 49% during that day and kept

increasing until the end of the year 2012.

By analyzing the list of events that are more economic in nature, there are a few observations

that we can draw. First, events involving the discovery of new oil fields, development of oil facilities,

or mergers of oil companies do not affect the connectedness of oil-based commodities. There are two

possible explanations for the unrelatedness of mergers: (i) events connected to mergers and develop-

ments are too local in scale to cause a shift in the oil spillover index, (ii) mergers and acquisitions

of oil companies are essentially good news for the oil market, as investors can expect increased and

stable production of oil-based commodities. Second, news reporting on the current state of oil stock,

or the release of reserves from the Strategic Petroleum Reserve, never passed the threshold of the

bootstrap test. One possible explanation is that releases from the Strategic Petroleum Reserve his-

torically happened in reaction to some other significant event. Lastly, the most surprising finding is

that the implementation or extension of sanctions against specific countries never caused a reaction
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in the spillover index. As was the case with releases from the Strategic Petroleum Reserve, sanctions

typically follow after a war conflict, which is more likely to be a source of increased connectedness.

More importantly, no sanctions have ever been implemented against Saudi Arabia, which is the main

producer and exporter of oil among OPEC members. Sanctions imposed on smaller exporters are

not substantial enough to cause an increase in volatility spillovers among oil-based commodities. The

ineffectiveness of trade sanctions was further analyzed by ? who concludes that total imports and

exports of crude oil do not change when sanctions are imposed. As oil is a necessity good, exporting

countries will simply change buyers when presented with sanctions (Torbat, 2005b). On the other

hand, financial sanctions are much more effective in comparison to trade sanctions.

It is especially surprising that neither of the events connected to the Russia-Saudi oil price war

starting in March 2020 triggered a prompt increase in the connectedness. After Saudi Arabia an-

nounced the oil price discount and initiated the oil price war on March 8, 2020, the index spiked to

its maximum value of 75% several times but then returned to values between 65 and 70. The event

passed the threshold of the test for only two days following the price discount, so the effect could not

be perceived as lasting.

5.2.3 Natural events

Considering the natural events overview in Table 7, we see that only 1 out of the 130 events labeled as

’natural’, passed the probability threshold for the main window length of 100 days. The PTT Global

Chemical oil spill occurred on July 27, 2013. The amount of oil spilled was about 50 tonnes or one

full tanker. A spill of this magnitude is too negligible to be considered causal when compared to the

production changes of OPEC, for example. Thus, we rule the causality of the event out. The lack

of explanatory power of natural events is striking. Understandably, losing a tanker’s worth of oil in

an accident does not cause massive oil supply disruptions. Even a 3.19 million barrels loss during

the Deepwater Horizon oil spill in 2010 is approximately just a third of the US daily production in

the year 2010 (Energy Information Administration, 2022). Even though hurricanes, earthquakes, and

extreme temperatures were historically responsible for the shutdowns of oil production facilities, none

of them caused a significant shift in the connectedness. In conclusion, natural disasters in our sample

of events do not cause a sudden increase in the connectedness of oil-based commodities, even if they

disrupt the oil supply, as they are too local and their effect on overall oil supply is too small with

respect to global oil production.
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Table 7: Test results: Natural events

Date Event Description Window
Event Count (%) Threshold

passed
Chance of
CausalityJ=0 J=1 J=2 J=3 J=4

27.07.2013 PTT Global Chemical Pcl oil pipeline spill
100 48,7 97,3 99,4 99,1 98,8 Yes

Low
200 66,3 67,1 72,2 74,9 78,2 No

17.08.2017 Hurricane Harvey
100 37,7 38,7 36,9 36,9 38,6 No

Low
200 100 100 100 100 100 Yes

Notes: This table features all natural events that passed the conventional statistical significance threshold. Each event
shows evaluation for a window length of 100 and 200 days. The ’Event Count’ columns show the percentage of the 1000
bootstrapped values that were higher than the previous mean value. In order to deem the effect continuously influential, we
require the event to pass the threshold for 1 to 4 days after the event occurs, which corresponds to one trading week. We do
not include the effect on the day that the event occurred to control for the speed of information flow among news channels.
The last column contains our results credibility assessment based on the analysis in Section 5.

5.3 Robustness checks

The results of our study are conditional on the choice of multiple parameters. The selection of assets

to include in the network is a parameter as well. We previously stated that the focus of this study

was to analyze the connectedness of petroleum-based commodities only, but adding natural gas into

the network is worth doing due to its interchangeability with oil-based energy sources (Kočenda and

Moravcová, 2023).

Adding natural gas to the network significantly decreases the overall spillover index down to

37.25%. This is due to the fact that natural gas is the most isolated commodity in the network.

Natural gas is responsible for its own volatility from 97.90%. This result is in line with the findings of

Mensi et al. (2021) and Kočenda and Moravcová (2023), who also report natural gas to be the best

hedge among these commodities. Gasoline-crude oil pair remains to be the most connected pair.

The rolling spillover index retains its dynamic pattern after adding natural gas to the network.

However, natural gas reduces the volatility of connectedness and pushes its average to lower level. On

the other hand, more brief spikes appear, which are usually tied to sudden correlated moves in all

the assets. March 2020 represents perhaps the only period of the energy commodities spillover index

(see Figure 4) being higher than the oil spillover index (see Figure 3). Due to the reduced volatility,

there were no new events identified by the test that were not previously included in the oil-only set of

events.

The choice of lag order, window length, and horizon is explained at the beginning of this Section.

As a robustness check, we experimented with other choices of these parameters. Selecting a higher lag

order and longer horizon had almost no impact on the dynamics of the spillover index and the results

of the text did not produce any changes with respect to identified events.

The choice of window length produced some differences, though. For daily time series, the literature

almost exclusively considers window lengths of 100 and 200 days. In accordance with the literature,

we performed the robustness check for a window length of 200. Naturally, a longer window results in

more stable VAR coefficients and less volatility in the rolling spillover index.
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Figure 4: Connectedness dynamics of energy commodities

Notes: This figure shows the evolution of the overall connectedness among oil-based commodities and
natural gas. Spillovers are calculated on the rolling window of 100 days. The vertical lines represent the
events that passed the conventional statistical significance threshold.

In terms of the connectedness dynamics, the 200-day rolling window spillover plot in Figure 5

appears to be a smoothed version of the 100-day version. Hence, the long-term development stays

the same. As could be expected, increasing the length of the window to 200 produces a smoother

index and reduces the number of identified events from 22 to 10. However, this reduction did not alter

the key results since the events with major impacts were identified in connectedness quantified under

both rolling windows. The robustness check shows that despite a smaller number of identified events,

the varying choice of the lag order, window length, and horizon does not produce materially different

results.

6 Conclusion

The objective of this study was to analyze volatility spillovers between oil-based commodities, detect

events that caused sudden and lasting increases in volatility spillovers of the commodities, and identify

their common characteristics. Using the spillover index methodology proposed by Diebold and Yilmaz

(2009, 2012), we observe that the spillover index had much lower values but was more volatile before

the year 2008, while it became more stable and higher on average since 2008. Although all the

commodities in the network were mostly influenced by their own past shocks, we found that crude oil

and heating oil were net volatility transmitters, while gasoline functions as a net volatility receiver,

and diesel is neither a net receiver nor a net transmitter. Adding natural gas to the network decreased

the overall connectedness since natural gas is dependent on its own volatility shocks from almost 100%.

Based on the novel bootstrap-after-bootstrap testing procedure, we identified 22 statistically sig-
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Figure 5: Oil commodity connectedness with a 200-day rolling window

Notes: This figure shows the evolution of the overall connectedness among oil-based commodities.
Spillovers are calculated on the rolling window of 200 days. The vertical lines represent the events that
passed the conventional statistical significance threshold.

nificant events after which the spillover index increased. We analyzed the events thoroughly and

grouped them into several categories based on their characteristics. The findings suggest that events

of a geopolitical nature are notably more likely to cause a shift in the network connectedness of oil-

based commodities. Three main characteristics often appeared across all the categories. The selected

events were usually unexpected, negative, and associated with a fear of oil supply shortage.

Acts of terrorism or political tensions that caused oil supply disruptions were the most prevalent

types of geopolitical events causing the spillover index to increase. On the other hand, positive events

such as peace negotiations or signing a peace treaty never caused a rise in volatility connectedness.

Among events of an economic nature, we did not identify any effect of mergers and acquisitions of oil

companies on the spillover index. Further, trade sanctions imposed on oil exporting countries never

caused a sudden shift in the volatility spillovers among oil commodities as well. Finally, threats and

speculations of both geopolitical and economic types were also ineffective.

Out of the 130 events with natural causes, there was no plausible event identified to impact

connectedness with a statistical significance. Thus, we believe that natural events are not the primary

causes of the shifting volatility connectedness of oil-based commodities. Using these results, investors,

hedge funds, and policymakers can easily assess any new oil-related news, and react accordingly to

the evidence presented in this analysis.

Our findings contribute to overall knowledge regarding oil volatility connectedness. Investors and

policymakers can use these results to identify or be alert to the (classes of) news with potential impact

on the oil markets and react accordingly. Furthermore, the events identified by our test can function
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as a reliable source of reference for future studies aiming to bring more insight into the connectedness

of oil-based commodities.
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Brown, Stephen PA and Mine K Yücel, “Energy prices and aggregate economic activity: an

interpretative survey,” The Quarterly Review of Economics and Finance, 2002, 42 (2), 193–208.
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Appendices

A Measure of connectedness - spillover index

This Appendix provides a full derivation of the spillover index introduced in the work of Diebold and

Yilmaz (2009, 2012) that has become a standard measure of connectedness. The volatility spillover

index requires some volatility estimate of all the assets in the network. We use a range-based realized

variance that was first introduced by Garman and Klass (1980). For Oit, Cit, Hit, Lit being the natural

logarithms of daily open, close, high, and close prices for commodity i on day t, the range-based

realized variance is computed as:

σ̂i,t
2 = 0.511(Hit − Lit)

2 − 0.019[(Cit −Oit)(Hit + Lit − 2Oit)

− 2(Hit −Oit)(Lit −Oit)]− 0.383(Cit −Oit)
2

xi,t =
√

σ̂i,t
2

(6)

Having obtained a vector of daily realized volatility estimates of m variables xt = (x1t, x2t, ..., xmt),

we can write VAR of lag p in its reduced matrix form as:

xt =

p∑
j=1

Ajxt−j + ut, (7)

where xt is an m× 1 vector of realized volatilities, Aj is a m×m matrix of VAR parameters for

lag j = 1, . . . , p, ut is an m × 1 of disturbances, so that ut ∼ N(0,Σ). The matrix Σ is a positive-

definitive covariance matrix of size m×m, with unknown distribution. We also explicitly remove the

static mean from the equation, as it does not affect variance decomposition.

Since this VAR form is simply a finite horizon AR process, we can use the Wold decomposition

and convert VAR into a more convenient infinite-order moving average process:

xt =

∞∑
ℓ=0

Gℓut−ℓ, (8)

where the ℓ-th m×m VMA parameter matrix is obtained recursively from the parameters of the

VAR model as Gℓ = A1Gℓ−1 +G2Gℓ−2 + . . . for ℓ = 1, 2, . . ., with G0 = Im and Gℓ = 0m for ℓ < 0,

where Im represents an m×m identity matrix, and 0m denotes an m×m zero matrix. The infinite

number of lags in the moving average representation can be sufficiently approximated with coefficients

of a finite horizon H

The moving average representation is crucial for calculating the spillover index, as it enables us

to decompose the variance of the forecast errors into parts. Nevertheless, the reduced VAR form is
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not identified, and the errors are just linear combinations of the structural form. Thus, we can not

attribute a shock to xi to innovations in a single variable xj . It is necessary to deploy some variance

decomposition scheme in order to orthogonalize the errors and remove the correlation between them.

Diebold and Yilmaz (2009) use the h-steps-ahead orthogonalised forecast error variance decomposition

(OVD) for the i-th variable can be obtained the moving average representations as:

θ
(H)
i←j =

∑H
ℓ=0 (e

′
iGℓPej)

2∑H
ℓ=0 e

′
iGℓΣG′ℓei

, (9)

where i, j = 1, . . . ,m represent the interaction between variable i and j. Vector ei is an m × 1

selection vector, such that there are zeros on every position, except for element i, which is equal to 1.

P is the m×m lower-triangular Cholesky factor of the residual covariance matrix Σ.

The value of θ
(h)
i←j can be viewed as the h-steps ahead forecast error variance of variable i due to

orthogonal shock to variable j. This orthogonalized variance decomposition measure is sensitive to

the ordering of the variables in the system. More importantly, it does not enable the measurement

of directed volatility spillovers. Therefore, Diebold and Yılmaz (2014) propose a generalized forecast

error variance decomposition (GVD), which is order-invariant, and allows the measurement of directed

spillovers. Now we are going to derive the generalized version since it is going to be used to compute

the spillover index.

Since the errors of Equation 8 are assumed to be serially uncorrelated, and the VAR model is

covariance-stationary, the total covariance matrix of Equation 8 of horizon H can be calculated as:

ΩH = E(xtx
′
t) = E(

H∑
ℓ=0

Gℓut−ℓ ∗ (Gℓut−ℓ)
′) =

H∑
ℓ=0

GℓΣG′ℓ (10)

In order to compute the generalized variance decomposition, we must first define the forecasting

error conditional on today’s innovation in variable j.

γj
t =

H∑
ℓ=0

Gℓ[ut−ℓ − E(ut−ℓ|uj,t−ℓ)] (11)

Assuming normal distribution of the shocks, we can use the Bayes theorem to rewrite the condi-

tional shock as:

γj
t =

H∑
ℓ=0

Gℓ[ut−ℓ − σ−1jj uj,t−ℓ(Σ).,j ] (12)

where σjj is the jth diagonal element of the residual covariance matrix Σ. The covariance matrix

conditional on the innovations to variable j is then:
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Ωj
H =

H∑
ℓ=0

GℓΣG′ℓ −
H∑
ℓ=0

GℓΣ.,jΣ.,j
′G′ℓ (13)

The forecast error variance of the i-th component of the VAR system stemming from innovations

to variable j is computed as:

∆(i)jH = (ΩH −Ωj
H)i,i = σ−1jj

H∑
ℓ=0

((GℓΣ)i,j)
2 = σ−1jj

h∑
ℓ=0

(
e′iGℓΣej

)2
(14)

Finally, we can obtain the generalized variance decomposition through scaling Equation 14 by the

unconditional forecast error variance of the i-th component:

ϑ
(H)
i←j =

σ−1jj

∑H
ℓ=0 (e

′
iGℓΣej)

2∑H
ℓ=0 e

′
iGℓΣG′ℓei

(15)

The notation of Equation 15 is consistent with the OVD specification. In the case of orthogonalized

variance, it holds that:

m∑
j=1

θ
(h)
i←j = 1,

m∑
i=1

m∑
j=1

θ
(h)
i←j = m (16)

whereas the sum of all proportions of forecast error variance to variable i will generally be greater

than 1 because the shocks do not necessarily need to be orthogonal (
∑m

j=1 ϑ̌
(h)
i←j > 1). Thus, Diebold

and Yılmaz (2014) apply a row-sum normalization of GVD:

ϑ̃
(H)
i←j = ϑ

(H)
i←j

/
m∑
j=1

ϑ
(H)
i←j . (17)

The matrix of ϑ̃
(h)
i←j , i, j = 1, . . . ,m can be viewed as a weighted directed network. For i ̸= j, the

bilateral interactions represent the ’spillovers’ - how much of the forecast error variance of a variable

i can be attributed to innovations of a variable j.

Denoting them×m h-step ahead matrix of the generalized forecast error variances as ϑ = {ϑi←j}hi,j .

Diebold and Yilmaz (2009) and Diebold and Yılmaz (2014) measure the total spillover index in the

following way:

SH = 100×

∑M
i,j=1
i ̸=j

ϑ̃
(H)
i←j∑M

i,j=1 ϑ̃
(H)
i←j

= 100× ι′ϑι− trace(ϑ)

ι′ϑι
%, (18)

where ι is an m× 1 vector of ones.

A static representation of volatility spillovers provides a good overview of network connectedness.

It is, however, merely an average throughout the whole studied period. A prolonged period of weak
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connectedness during a stable economic period followed by a financial crisis would display only a mild

average connectedness, while the economic interpretation is entirely different when the two periods

are evaluated separately. For petroleum-based commodities in particular, the strength of volatility

spillovers varies throughout different historic periods (Kilian, 2009).

Since our goal is to analyze the spillover levels before and after a certain event, it is necessary

to observe temporal changes of the spillover index. The impact of economic events on volatility can

not be sufficiently quantified using non-overlapping or arbitrary intervals (Kang and Lee, 2019). By

using a rolling spillover measure, we can observe trends and sudden jumps in the spillover index.

Trends in volatility spillovers can be attributed to the gradual advancement in technology, progressing

globalization, a rise of hedge funds, or the prolonged state of the global economy (Liu and Gong, 2020).

Furthermore, we are able to assess the state of the spillover network each day. Thus, for sudden bursts

in volatility spillovers, the daily volatility spillover measure enables us to explore possibly causal effects

of the events in our dataset.

The calculation of the rolling spillover index is identical to the static one. Given observations at

time t = 1, ..., T , we simply choose a rolling window of size w, and compute the forecast error variance

matrix ϑ̃(h) using only the last w observations. In the end, we obtain ϑ̃
(h)
t , t = w...T matrices, from

which we can calculate a series of spillover index values of size T .
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B Brief history of the oil market

We devote this section to summarizing the historical development of the global oil market. To un-

derstand the dynamics and connections of individual events in our dataset, it is necessary to acquire

an overall picture of the oil market and its role in modern history. It can be argued that oil price

volatility is also influenced by major historical events seemingly unrelated to oil as such. Nevertheless,

using the U.S. macroeconomic news, Kilian and Vega (2011) showed that news that is not directly

related to energy commodities explains only 0.69 and 1,6% of monthly oil and gas price variation.

Thus, we only account for events clearly related to oil in our events dataset, as well as the following

overview. For a more comprehensive summary, we refer to the work of Hamilton (2009, 2013); Kilian

(2009, 2014).

The 1960s and 1970s brought a series of conflicts in the Middle East, which was the main factor

behind oil price changes for the following decades. The price of oil increased in October 1973 due

to the Arab-Israeli War. The global output decreased by 7.5 % in November 1973 (Hamilton, 2013).

Due to the embargo on oil exports imposed by the Arab States combined with the depletion of US

oil fields during this period, the United States experienced a critical shortage of gasoline from 1974 to

1980, which led to long lines at gas stations, rationing of gasoline, massive inflationary pressure, and

industrial disruptions. Oil production dropped by another 7% in 1978 due to the Iranian Revolution

(Hamilton, 2013). The price of oil more than doubled during this period, leading to a substantial

decline in petroleum consumption in the early 1980s.

The Iraq-Iran war was waged in the period from 1980 to 1988. Both countries targeted oil facilities,

tankers, and merchant ships to reduce oil exports of the opposing party, which further increased the

volatility of oil prices (Karsh, 2003). The war resulted in combined financial losses of over $1 trillion,

and a loss in global oil production of 6% (Hamilton, 2013).

In 1988, oil prices began to be mostly market-driven. One significant factor was the collapse of

OPEC in 1985, which weakened the cartel’s ability to control prices and led to increased competition

among oil-producing countries. Additionally, there were more suppliers outside of OPEC, as the

nationalization of the oil industry in many countries had led to the emergence of new players in the

market. The oil market had also become more complex and interlinked, with a wider range of products

and an increased ability to trade oil on global markets. These factors contributed to a shift towards

a more market-driven pricing system for oil (Fattouh, 2011).

In 1990, Iraq started yet another war by invading Kuwait. Kuwait ramped up its oil production

levels, which kept revenues down for Iraq and further weakened its economic prospects. Kuwait was

supported by a military coalition led by the United States, the United Kingdom, France, Saudi Arabia,

and Egypt. The price of crude oil doubled in a short time span. The cumulative global production
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loss due to the conflict was estimated at 9% (Hamilton, 2013). Oil prices started to be more influenced

by macroeconomic indicators during this time (Gogolin et al., 2018)

In the mid-1990s, many emerging economies started to develop rapidly, especially in Asia. The

so-called Asian Tigers were a group of newly industrialized economies that emerged in the 1980s

and 1990s. These countries, which include South Korea, Taiwan, Hong Kong, and Singapore, were

responsible for much of the rise in global oil consumption during this time. Although they used only

17% of the world’s oil production, they were responsible for 69% of the increase in consumption during

this time (Hamilton, 2013). The rapid growth was followed by the Asian financial crisis of 1997, which

led to a decrease in demand for oil (Hamilton, 2013). In response to the crisis, OPEC shifted its policy

in order to raise the price of crude oil, which had fallen to $10 per barrel by late 1998.

The increased demand in Asian states, tensions in the Middle East, a general strike in Venezuela,

and a weak US dollar caused a second energy crisis, which lasted from 2003 to 2008. Despite the

repeated attack on Iraq by the United States, and missiles launched by Iraq on Kuwait, the key factor

for the steady price increase until 2005 was the growth in demand (Kilian, 2009; Hamilton, 2013;

Karali and Ramirez, 2014).

The 2000s brought significant technological advancement in terms of oil and gas extraction. It

became possible to extract gas and oil from shale deposits found in close proximity to lakes and rivers

using a combination of horizontal drilling and fracking (hydraulic fracturing) (Wang, Chen, Jha and

Rogers, 2014). Furthermore, there has been ongoing financialization of commodities since the early

2000s (Tang and Xiong, 2012). Oil became tradable through spot transactions, futures, and forward

contracts, which opened a possibility to invest in oil for speculative purposes (Hamilton, 2009). In

conclusion, the financialization of commodities has influenced the volatility spillovers across oil-based

commodities in a way that oil prices became more sensitive to seemingly unrelated macroeconomic

news, and their volatility started to be more connected to overall market volatility (Gogolin et al.,

2018; Wang and Guo, 2018).

The Great Financial Crisis induced a sharp drop in energy commodities from the peak of $140

to $40 due to lowered demand. Volatility spillovers between financial assets and commodities spiked

significantly (Bubák, Kočenda and Žikeš, 2011; Zhang and Wang, 2014; Xu et al., 2019; Kang and

Lee, 2019). The strong linkage between the global economy and oil prices started to weaken after the

Global Financial Crisis (Baruńık et al., 2015).

The effective extraction of shale oil developed only after 2011, and it increased the US production

of crude oil by 3.6 million barrels per day (Ansari, Kaufmann et al., 2019). The influence of OPEC

weakened as the private shale oil companies did not regulate their production depending on global

needs and the spare capacity of OPEC became less effective (Almutairi, Pierru and Smith, 2021).
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OPEC attempted to squeeze shale oil producers out of the market by lowering oil prices, which was

partially successful until 2014. As a result of the rapid innovation and increased productivity of oil rigs,

OPEC was no longer able to control the market (Diebold et al., 2017; Ansari et al., 2019; Almutairi

et al., 2021). During the 2010s, the production share of OPEC fell to approximately a third of global

oil output, while the United States increased its oil output by 78% from 2008 to 2016 (Aguilera and

Radetzki, 2017).

After 2016, oil prices increased steadily due to demand increases, and production constraints

from OPEC, but mainly the US-China Trade War. During this period, both countries imposed

tariffs on imports. The U.S. targeted approximately $350 billion of Chinese imports (Fajgelbaum

and Khandelwal, 2022). China also raised the tariffs on crude oil, which induced global demand

adjustments and oil price increase.

In March 2020, OPEC decided on a production cut. Russia did not respect the decision, and

increased production and exports, to which Saudi Arabia reacted in a similar manner. Russia - Saudi

Arabia oil price war coincides with the COVID-19 pandemic, which introduced quarantine measures

and reduced the need to commute. Due to these reasons, global consumption of gasoline dropped by

46.40% in March, and the price per barrel fell from $50 to $30 (Ma, Xiong and Bao, 2021). There was

a massive increase in spare capacity, which caused the price of crude oil to fall to minus $37 on April

20, 2020. The negative price of crude oil reflects the fact that it was too costly for firms to store the

surplus of supply, but investors were willing to pay for not having the oil physically delivered (Ma et

al., 2021; Kočenda and Moravcová, 2023).

On February 24, 2022, Russia invaded Ukraine and started yet another volatile period for the oil

markets. The Brent Crude oil price spiked to $105 and gas prices rose by 40-50% on that day (Sun,

Song and Zhang, 2022). Nonetheless, Europe managed to cut most of the Russian oil imports by the

end of 2022. The price of oil and gas started to decline in the second half of 2022 due to the release

of US reserves and the OPEC production increase.
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